第1372章 人类之未来(2/5)
。是的,你能。
正如同对方的话所说,如果真有了这样的存在,的确是什么事情都能够办到。
“代号a的产品,我们也能够无限量的提供给你。”
这是最重磅的炸弹。
“我……我需要知道,你们究竟是什么人,我不能莫名其妙的为你们服务。”
哈罗德已经动心了。
他也不可能不心动。
“seele。”
肖恩说出了这个组织的名字。
“‘魂之座’是一个从过去就一直存在的组织。魂之座一直在幕后调控人类的发展,但是在现在,他们决定开始自行介入。”
……
学区。
巴别塔工程实验基地。
生物学家这个时候。正在对人体的基因组进行最后的测序。
碍于条件限制,相对于原本的世界的人类基因组计划,现在的这个巴别塔工程。实际上已经是非常的慢了。
这是现在的测绘条件不允许所造成的。
……请一点钟之后再看,努力码字ing……
生物学家在给基因组测序时发现,每个物种中都有多达13的基因似乎没有任何“父母”,也不属于任何“家族”。不过,这些“孤儿基因”中有一部分可谓功成名就,甚至有一小部分似乎在人类大脑的演化过程中起过重要作用。
但是,它们是从哪里来的呢?这些基因没有显而易见的祖先,就像是凭空产生的,但这显然不可能。所有人都以为,随着我们知道的越来越多。这些基因的“家人”就会被我们发现。可惜,事实恰恰相反。
自从我们发现了基因,生物学家就在探索它们的起源。生命刚刚兴起时,最初的基因想必是偶尔产生的。不过,几乎可以肯定。生命起源于rna世界。因此在那个时候,基因不可能只是作为蓝图,用来制造引导化学反应的酶——基因本身当时就是酶。如果有随机过程产生了一小段rna,能够帮助它自己更好地自我复制,那么自然选择就会立即起效。
然而,随着活细胞的演化。事情变得好复杂。基因变成了编码蛋白的一段dna。要产生一种蛋白,就要先转录出相应dna的rna拷贝。没有“dna开关”的参与,这个过程不可能发生。所谓“dna开关”,就是dna在编码蛋白的片段之外额外多出的一小截,表达“把这段dna转录成rna”之意。接着,rna必须进入蛋白质生产车间。在复杂的细胞内,这个过程要求rna上带有更多额外的序列,用作标签来表示“把我翻译出来”和“从这里开始制造蛋白”等等。
如此复杂带来的一个结果就是,通过随机突变把一段垃圾dna变成一个新基因的几率,似乎会非常非常之小。就像35年前法国生物学家弗朗索瓦.雅各布的著名论断所言:“靠氨基酸随意组合从头形成一个有功能的蛋白,这种可能性实际上是零。”
不过,有人提出,基因复制出错时可能产生一个单一的基因,并由此产生整个基因家族。这个过程就好像动物界中,经过一段漫长的时间,一个物种分化出一大“家族”具有较近亲缘关系的不同物种。在整个基因中,复制出错是常有的事。多余的拷贝通常会丢失,但有时也会有复制品与原始基因拥有同样的功能,或者分化出一个新功能。
就拿感光色素视蛋白来说,我们眼睛里有多种视蛋白,它们不仅彼此相关,还与其他动物的视蛋白有亲缘关系。在动物界已经发现了数千种不同的视蛋白基因,它们全都来自于同一个基因的复制,这个祖先基因可以追溯到大约7亿年前。
大多数基因都隶属于某个基因家族,家族中相似的基因拥有共同的祖先,可以追溯到成百上千万年前。可是,就在大约15年前,当酵母基因组测序完成时,人们发现有大约13的酵母基因好像找不到同家族的基因。人们用“孤儿”一词来描述那些独有的基因,或者一小组非常类似、却又没有已知同源基因的基因。
美国宾夕法尼亚州立大学研究复杂性状演化的肯.魏斯说:“如果看到一个基因。又找不到它的‘亲戚’,你就会觉得有点疑神疑鬼。”有人提出,孤儿基因就相当于遗传学中的活化石,就像腔棘鱼一样是一个古老家族中最后的幸存者。其他人则认为,孤儿基因也没什么特别,就是普通的基因,只不过它们家族的其他成员还没有被发现。毕竟。全基因组测序当时也才刚刚起步。
然而,随着越来越多的生物接受基因组测序,孤儿基因找到所属家族的“大团圆”结局却很少出现。到目前为止。在完成测序的每一个物种中,不论是蚊子还是人,是蛔虫还是大鼠。人们都发现了孤儿基因,并且数量还在增长。
现在,孤儿基因的研究尚在襁褓,我们对其中绝大多数基因的了解都少之又少。我们有所了解的那一部分则涉及各种功能。有些与dna的修复和组织有关,有些则控制着其他基因的活性。昆虫中有一种被称为fligin的孤儿基因,编码着一种肌肉翅膀蛋白,有利于昆虫的飞行。12年,美国芝加哥大学的龙漫远团队公布了一项研究,发现近期演化产生的两个昆虫孤儿基因,有助于果蝇形成觅食行为。
珊瑚、水母和水螅等动物长有蛰刺细胞。这种复杂精巧的结构一旦受到刺激,就会放出有毒的刺丝麻痹猎物,而这种细胞的发育就是由孤儿基因操纵的。淡水水螅的口周围有摄食用的触手,触手的发育也是由孤儿基因操纵
第2页完,继续看下一页